
developer.* 2006 by Robert L. Glass Page 1 of 3
Original author owns and reserves all future rights. Reprint only with written permission.

developer.*

Success/Failure Criteria: Some Surprises
by Robert L. Glass

Editor’s Note: the following article originally appeared in the July 2006 issue of The Software

Practitioner, which is edited and published by Robert L. Glass. developer.* is grateful to Mr. Glass

for allowing us to republish it here.

Brisbane, Australia - At a breakfast seminar here June 6 on “Factors for IT Project Success

and Failure,” Prof. June Verner of NICTA (the National Information and Communication

Technology institute of Australia) provided a fascinating mix of surprises and predictables

related to her subject topic. The findings came from NICTA’s study of 400 projects in the

U.S., Australia, and Chile, using questionnaires and interviews to discuss success and

failure factors with practitioners.

What were the surprises?

 Most projects that had no schedule were successful

 Requirements are needed for project success, but not necessarily early in the project

 Projects often continue successfully for some time with unclear requirements

 The choice of requirements methodology does not matter; UML was “no help”

 Using a development methodology was a success factor, especially when it was

“appropriate to the application”

 Very few projects use risk management, and those that do rarely manage those risks

 Post mortem reviews are rarely held, and when they are it is almost always on

successful projects

 In the U.S. (but not elsewhere), developers are involved in project estimation only

when there are poor requirements (Verner speculated that this is because the

powers that be were looking for someone to blame!)

developer.* DeveloperDotStar.com

developer.* 2006 by Robert L. Glass Page 2 of 3
Original author owns and reserves all future rights. Reprint only with written permission.

And the predictables?

 Success comes from a culture that investigates and deals with problems

 The vision for the project (its business goals) must be shared among all project

personnel, especially the project manager

 Project managers should be involved in the estimation activity

 Project managers should be good at customer and developer communication; they

need not be good at the technology

There was some interesting data from the study, as well:

 60% of organizations have no process to measure benefits

 86% of projects had a business case, but 60% ignored it

 33% of projects said they had no risks, but 62% of those failed

 49% or organizations have had (one or more) project failures

 In one-third of the projects, the project manager had no say in schedule/budget

targets

 75% of projects were underestimated, none were overestimated

 5% of projects had no project manager; 16% changed project manager at least once

(and that was correlated with project failure)

Verner also asked developers what their criteria were for project success. They said:

 They had a sense they had delivered a quality product

 They had a sense of achievement

 They had enough independence to work creatively

 The requirements were met and the system worked as intended

###

For more information about The Software Practitioner, please visit
http://www.developerdotstar.com/mag/bios/software_practitioner.html

developer.* DeveloperDotStar.com

developer.* 2006 by Robert L. Glass Page 3 of 3
Original author owns and reserves all future rights. Reprint only with written permission.

About the Author

Robert L. Glass held his first job in computing in 1954. Author of over 25 books, he is one

of the true pioneers of the software field. He is the editor and publisher of The Software

Practitioner, and also writes regular columns for Communications of the ACM and IEEE

Software. In 1995 he was awarded an honorary Ph.D. from Linkoping University of

Sweden, and in 1999 he was named a Fellow of the ACM professional society. His unique

viewpoint and timeless writings have for decades offered insights to practitioners,

managers, professors, entrepreneurs, researchers, and students alike.

developer.* published Software Conflict 2.0: The Art and Science of Software Engineering

in 2006.

