
developer.* Magazine DeveloperDotStar.com

developer.* 2005 by Aaron Reed Page 1 of 7
Original author owns and reserves all future rights. Reprint only with written permission.

developer.*
The Independent Magazine for Software Professionals

Software Team Turnover:

Why Developers Leave (And What You Can Do About It)
by Aaron Reed

Unplanned turnover hurts—especially when you lose top people. Good developers are a

rare breed. If you’ve ever hired a new software developer, you know how difficult it is to

find people that are competent.

Good developers that work well with your existing team of developers are even

harder to find. Even when you find a person with the right skills, personality conflicts and

other issues can arise to complicate the team dynamics and jeopardize the team’s cohesion.

When a good team has finally been assembled, it’s imperative to keep them together and

working well.

In addition to the loss of team cohesion, the organization loses the intangible

knowledge that good developers take with them when they leave. Even with good

documentation, developers possess undocumented knowledge about the product, the

domain, and the designs that is essential to the project’s completion. The fact that most

development efforts also suffer from less than adequate documentation compounds the

impact that the loss a developer’s product knowledge has on the overall outcome.

In addition to product knowledge, key developers have indispensable knowledge of

the organization’s processes, development tools, source code control, coding standards,

and more. All of this adds up to a very costly void that any company needs to fill when key

developers jump ship.

Far too frequently a manager or executive will get caught up in the mindset that the

salespeople are the most important cogs in the machine. After all, the sales people are the

ones bringing in the money, right? Well, yes and no. Sales people are important, and a

good sales staff is essential, but if you have no developers to build the product, what will

the sales people sell?

developer.* Magazine DeveloperDotStar.com

developer.* 2005 by Aaron Reed Page 2 of 7
Original author owns and reserves all future rights. Reprint only with written permission.

It sounds simple, but I’ve been involved with far too many companies where sales

people are treated like gold and developers are treated more like rusty iron. Whether your

organization is sales-oriented or not, if you depend on your software developers for

success, you might be missing opportunities because of unplanned turnover that could

have been avoided.

So the question then becomes: How can you avoid developer turnover and keep key

team members on staff for lengthy periods of time? Well, there’s no simple answer, but I’ve

got some ideas to share with you. All situations are different, and there are countless

reasons why people may or may not seek a change. I’ll discuss the top three reasons why

developers tend to look for greener pastures. Considering these three areas and making

some adjustments may help you hold on to key pieces of your puzzle.

Money

Easily one of the biggest issues that causes developers to look elsewhere is probably

the first issue which causes managers to cringe. That’s right, most developers are just like

everybody else in that they too exclaim the immortal words of Jerry Maguire, “Show me

the money!”

Unfortunately, most developers are painfully aware that the best way to get a raise is

to simply get a new job. A developer might be happy in all aspects of her job, but if she

knows that her company is paying her below market rates, that fact might outweigh all the

good. There are few companies that are willing to give a good, yet underpaid, developer a

raise that will exceed what the developer could get by jumping ship and landing in a new

job elsewhere.

I know what you’re thinking. You can’t possibly afford to pay all your developers

enough money to compete with any offer that may be out there on the horizon. So what is

the solution then? It’s a good idea to ensure that all development team members are paid a

competitive rate, but the key is to identify a small portion of your development staff as

people who you decide to invest in long term, and to take care of them in a way that will

make them never want to leave for monetary reasons.

There are numerous ways to let a developer know that you are interested in working

with him long term, and not all of them involve monetary rewards. Any kind of additional

“perk” goes a long way towards making people happy. These can involve non-liquid

monetary assets such as stock options as well as perks like telecommuting, free

lunches/snacks/sodas, good hardware, other gadgets (cell phones, PDAs) and so forth.

developer.* Magazine DeveloperDotStar.com

developer.* 2005 by Aaron Reed Page 3 of 7
Original author owns and reserves all future rights. Reprint only with written permission.

Keep in mind that many developers are “geeks” and often a cool PDA or a sweet

workstation can go a long ways in this department.

There is a catch here, however. While these kinds of incentives can go a long way

towards pleasing employees, nothing can harm morale faster than broken promises. That

is, promising a bonus is great, but if the money isn’t available, or the rules are changed

midstream, and the developers end up not getting the promised bonus, it does far more

harm than never having promised a bonus in the first place. Make sure that whatever you

commit to is feasible and that you follow through with the promise.

Morale

If a good developer leaves the company for a reason that doesn’t directly involve money, it

is often some type of morale problem—one that may be more widespread than you think. If

people aren’t happy where they work, they will often leave for equal—or even less—pay

elsewhere.

There are a few key things, especially when dealing with software developers, that

can go a long ways towards keeping people happy and in turn, keeping them on your

payroll.

I believe the biggest morale-related factor that causes good developers to look

elsewhere boils down to the need for a new challenge. Part of the problem with keeping a

developer challenged is inherent in the way software projects are run. For example,

developers tend to learn on two different curves when landing a new development job

which are pictured in Figure 1 below.

Figure 1: Developer learning curves.

developer.* Magazine DeveloperDotStar.com

developer.* 2005 by Aaron Reed Page 4 of 7
Original author owns and reserves all future rights. Reprint only with written permission.

The dotted line represents the progression a developer’s rate of learning and

enhancing his or her technical skills. When first hired, a developer learns at a rapid rate.

This is due to working with new people, new processes, new tools (possibly new

development languages), working with existing architectures, and so on. At a certain point,

that learning curve begins to level out because the developer becomes familiar with the

work, the tools, the languages, etc. At this stage the work can become a bit more routine

and monotonous.

The solid line represents the rate at which the developer acquires domain knowledge

while working on a given project. For example, if a developer starts a new job in the public

library domain, that developer will begin learning more and more about the operation and

nuances of public libraries. This curve tends to not level out as much or possibly not at all

due to the fact that even though a software project may be released and completed, future

research is spent on finding out ways to improve library operations and other user-related

features that could be a selling point for the product.

As you can see from the graph, there is a certain point at which a developer starts

learning more about the domain and not learning much, if anything, new technically. For

many developers this may not be an issue, but for other developers this can result in a loss

of interest in the company, the product, or their job as a whole.

A developer may be seeking to improve their skills, and not care as much about

domain specific knowledge. If that is the case, this is the point at which a developer can

become dissatisfied with his job and look on to bigger and better horizons.

The development of this situation is natural, but detecting it and doing something

about it can be difficult. Get to know each of your talented developers individually and find

out their career goals and desires. Each person is different, but a general theme you will

encounter is that you need to keep your good developers technically challenged. Actually

keeping them challenged is the difficult part. How to best go about it really depends on the

individual developer—what challenges they seek and what motivates them individually.

By getting to know your developers, you will learn numerous ways that you can try to

keep the technology learning curve from leveling out. All developers are different and

different things inspire and motivate them. Find out what each person’s motivating factor

is, and then keep your good developers where they want to be. You may even find that

some of your best developers will actually prefer working on an existing project with

familiar code as opposed to working on a new project with new technologies. Try to keep

your good developers working on projects they enjoy—whether that be an existing project a

developer.* Magazine DeveloperDotStar.com

developer.* 2005 by Aaron Reed Page 5 of 7
Original author owns and reserves all future rights. Reprint only with written permission.

person has worked on for a long time, or a brand new system that needs to be designed, or

something in between.

Moving developers to new projects can be difficult because as developers build up

domain and project knowledge, your first instinct is to keep them on that project and hire

new developers to work on new projects. While that sounds like a good idea, it may or may

not be the best solution for your developers and/or your company. What often happens is

employers will keep proven developers on existing projects and hire unproven ones to

spearhead new projects. While this may make sense from a business perspective in the

short term, in the longer term—after the unproven new hire fails to develop a good product

and the proven developer quits from boredom—it may not turn out so well.

When changing projects is not an option, there are also a number of other ways to

allow developers to flex their brains now and then. These can include offering training

opportunities to train people on the latest technical tools, sending people to technical

conferences or workshops, offering tuition reimbursement to allow developers to continue

their educations, giving good developers the go-ahead to analyze and re-work existing

architectures, and so on. Be creative and let developers know that they are allowed and

encouraged to further their own careers and not just your projects.

The bottom line here is to identify your good developers, the ones that you want to

have around for a long time, and find out where they want to be and what they want to be

doing. Work with them to make them happy and to keep the company moving forward.

Even when you’re not able to take the actions you’d like to take, simply pulling a developer

aside and taking the time to find out what makes him or her happy goes a long way, in and

of itself, towards building good morale.

Burnout

Finally, I’ll address the third major reason why developers tend to switch jobs: burnout.

Software development is a tedious business and a difficult task for all involved. As projects

near completion, work life is full of meetings, disorganization, overtime, and stress. Even

the standard day for a good developer is full of heavy thinking, problem solving, frustrating

compilation errors, and the like. Software development is not your standard “sit at your

desk” job. It’s the equivalent of taking a difficult test 8 hours a day, 5 days a week (plus

overtime).

developer.* Magazine DeveloperDotStar.com

developer.* 2005 by Aaron Reed Page 6 of 7
Original author owns and reserves all future rights. Reprint only with written permission.

Burnout is a real issue and something that faces nearly every developer at some time

in their career. Often the thought is to change careers completely and get away from it all.

Some look to management positions, hoping for less stress. More often than not, however,

the “solution” is to look elsewhere for a new job thinking the immortal words, “it can’t

possibly be this bad over there.”

The biggest thing that managers need to be able to do in order to prevent burnout is

to allow their employees to have fun. This is a very hard thing for a lot of development

managers to do. Taking 15 minutes to a half hour out of the day to have fun will seem

superfluous to many. But there is so much that can be accomplished in a simple activity

that may last only as long as your average smoke break.

A team that has fun together is much more likely to work together well, enjoy

working with each other and help each other. Job satisfaction is increased when there is

something other than work to look forward to as well. The mental drain of a tough day of

debugging can severely be lightened by a few minutes of entertainment.

What kinds of activities am I talking about? That’s up to you. People are different and

different things work for different people so there isn’t any one clear answer to that

question. Many developers are computer gaming geeks as well so a quick match of

Warcraft III or Unreal Tournament can serve to refresh a developer almost as well as a

good nights sleep. Others don’t enjoy PC gaming, but will welcome other things, like a

quick game of HORSE on the Nerf basketball hoop in the hallway.

One company set aside a few minutes every Friday morning for miniature golf. Every

person was responsible for setting up a miniature golf hole in their cubicle and then the

team played a round of golf. Another company had a racing course setup in an unused

conference room for Friday office chair races. Some companies have parties and luncheons

to raise employee morale and give employees and occasional break. Be creative and come

up with something that will be entertaining for the team members while also being

constructive toward building team morale and keeping everybody energized for the work

ahead.

Keep in mind that it is far better to offer an activity that costs less and free to

employees than to offer something more lavish and charge employees an admission fee.

For a team morale building exercise, nothing slaps you in the face as much as a money

collector at the front door. Imagine being that one employee that is just making it paycheck

to paycheck and is then excluded from work activities because of the cover charge. Not

many things can destroy morale as quickly as that.

developer.* Magazine DeveloperDotStar.com

developer.* 2005 by Aaron Reed Page 7 of 7
Original author owns and reserves all future rights. Reprint only with written permission.

Conclusion

There are many other reasons why developers would lean towards moving on to greener

pastures, but I’ve touched on some of the biggest ones. What this all really boils down to is

managing a public relations campaign within your own organization in an effort to win

over (and keep) your employees.

However, before looking to big, broad, expensive gestures and top-down morale

improvement initiatives, look at the simple things first. Things like getting to know your

employees personally, using common sense in operations, and finding out what employees

want from you and your company can go a long, long way towards helping you keep good

people working hard in your organization.

###

Aaron Reed is an Assistant Professor at Northface University in South Jordan, Utah. He

holds a BS in Computer Science from Weber State University and a Microsoft MCP

certification. Aaron has worked in the software development industry for 12 years in

positions ranging from entry-level developer to vice-president of development at several

companies. He has worked in .NET technologies since the first beta was released. When he

isn’t reading up on the latest development technologies, Aaron loves spending time with

his wife and three children.

